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ABSTRACT Antibiotic-resistant enterococci are major causes of hospital-acquired infections and therefore represent a serious
public health problem. One well-known risk factor for the acquisition of hospital-acquired enterococcal infections is prior ther-
apy with broad-spectrum cephalosporin antibiotics. Enterococci can proliferate in patients undergoing cephalosporin therapy
due to intrinsic cephalosporin resistance, a characteristic of the genus Enterococcus. However, the molecular basis for cephalo-
sporin resistance in E. faecalis has yet to be adequately elucidated. Previously we determined that a putative Ser/Thr kinase, IreK
(formerly PrkC), is required for intrinsic cephalosporin resistance in E. faecalis. Here we show that kinase activity is required for
cephalosporin resistance and, further, that resistance in E. faecalis is reciprocally regulated by IreK and IreP, a PP2C-type pro-
tein phosphatase encoded immediately upstream of IreK. Mutants of two divergent lineages of E. faecalis lacking IreP exhibit
remarkable hyperresistance to cephalosporins but not to antibiotics targeting other cellular processes. Further genetic analyses
indicate that hyperresistance of the IreP mutant is mediated by the IreK kinase. Additionally, competition experiments reveal
that hyperresistant �ireP mutants exhibit a substantial fitness defect in the absence of antibiotics, providing an evolutionary
rationale for the use of a complex signaling system to control intrinsic cephalosporin resistance. These results support a model
in which IreK and IreP act antagonistically via protein phosphorylation and dephosphorylation as part of a signal transduction
circuit to regulate cellular adaptation to cephalosporin-induced stress.

IMPORTANCE As a major cause of hospital-acquired infections, antibiotic-resistant enterococci represent a serious public health
problem. Enterococci are well-known to exhibit intrinsic resistance to broad-spectrum cephalosporin antibiotics, a trait that
enables them to proliferate in patients undergoing cephalosporin therapy, thereby predisposing these patients to acquisition of
an enterococcal infection. Thus, inhibition of enterococcal cephalosporin resistance could represent an effective new strategy to
prevent the emergence of hospital-acquired enterococcal infections. At this time, however, the molecular basis for cephalosporin
resistance in E. faecalis is poorly understood. Our results begin to unravel the details of a new phosphorylation-dependent signal
transduction system that controls cephalosporin resistance in enterococci. Deeper understanding of the mechanism underlying
cephalosporin resistance in E. faecalis may enable the development of new therapeutics designed to reduce the incidence of
hospital-acquired enterococcal infections.
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The Gram-positive bacterium Enterococcus faecalis is a com-
mensal inhabitant of the gastrointestinal tracts of a wide vari-

ety of insects and animals, including humans (1). However,
antibiotic-resistant enterococci are also major causes of hospital-
acquired infections (2) and therefore represent a serious public
health problem. One well-known risk factor for the acquisition of
enterococcal hospital-acquired infections is prior therapy with
broad-spectrum cephalosporins (3), antibiotics that belong to the
�-lactam family and interfere with cell wall biosynthesis by inhib-
iting the penicillin-binding proteins (PBPs) that cross-link pepti-
doglycan (PG). The prevailing model to explain the association of
cephalosporin therapy with increased risk of enterococcal infec-
tion (reviewed in reference 3) invokes the observation that entero-
cocci proliferate to achieve abnormally high densities in the gas-
trointestinal (GI) tract of patients during cephalosporin therapy
(4), a situation that likely facilitates enterococcal dissemination to

other sites and the subsequent emergence of infection. Prolifera-
tion of enterococci during cephalosporin therapy is possible be-
cause enterococci exhibit intrinsic resistance to broad-spectrum
cephalosporins. This intrinsic cephalosporin resistance is a trait
shared by essentially all isolates of E. faecalis, yet our understand-
ing of the genetic and biochemical basis underlying cephalosporin
resistance remains incomplete.

Three genetic loci have thus far been reported to be critical for
cephalosporin resistance in E. faecalis: (i) pbp5, which encodes a
so-called “low-affinity” PBP that exhibits reduced affinity for
cephalosporins and presumably retains the ability to synthesize
cell wall despite the presence of cephalosporins in the environ-
ment (5, 6); (ii) a locus encoding a two-component signal trans-
duction system (CroRS) which presumably regulates the expres-
sion of as-yet-unknown genes that promote cephalosporin
resistance (7, 8); and (iii) a gene encoding a predicted Ser/Thr
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kinase, genetic deletion of which drastically reduces cephalospo-
rin resistance but which has not yet formally been shown to pos-
sess kinase activity (9). In our original report (9), this kinase was
referred to as PrkC— here we rename it IreK (for intrinsic resis-
tance of enterococci), to reflect its critical role in intrinsic cepha-
losporin resistance.

IreK belongs to a family of Ser/Thr protein kinases with a char-
acteristic bipartite domain architecture. Kinases in this family
share a presumably cytoplasmic kinase domain separated by a
predicted transmembrane segment from a series of PASTA do-
mains that are thought to bind PG or fragments thereof (10–12).
Homologs of IreK with similar domain architecture are present in
the genomes of nearly all low-GC Gram-positive bacteria (usually
found in 1 copy per genome), and analyses of mutants lacking
those kinases have revealed diverse functional roles for the ki-
nases, including development of competence, regulation of intra-
cellular nucleotide pools, virulence, control of hemolysin produc-
tion, cell division, stationary-phase survival, germination of
endospores, and modulation of antibiotic resistance (reviewed in
reference 13).

Although the phenotypic consequences of genetic lesions in
the kinases have been studied in some detail for numerous Gram-
positive bacteria, less is known about mechanisms of kinase regu-
lation. Extensive structural studies on the purified kinase domain
of the mycobacterial IreK homolog (PknB) revealed a back-to-
back homodimer (14, 15) and suggested a regulatory mechanism
by which dimerization allosterically activates the kinase (16). Ad-
ditionally, mass spectrometry studies have revealed that the puri-
fied kinase domains of two IreK homologs (mycobacterial PknB
and Bacillus subtilis PrkC) can be autophosphorylated at multiple
sites per monomer—in most cases, at threonine residues—in-
cluding at several conserved sites in the kinase “activation loop”
(14, 17–19). The activation loop is a short, centrally located seg-
ment of the kinase domain that is thought to undergo a confor-
mational shift upon phosphorylation, leading to activation of the
kinase. Substitution of the phosphorylatable residues with alanine
in the kinase domains of PknB and PrkC substantially reduces
kinase activity (17, 18), suggesting that autophosphorylation of
the activation loop indeed enhances kinase activity for both PknB
and PrkC. Thus far, the vast majority of studies probing the mech-
anisms of kinase regulation have been performed in vitro using
purified kinase domains. Although it seems likely that these find-
ings will translate into the in vivo setting, at present it is not clear to
what extent these mechanisms contribute to kinase regulation
in vivo.

In the genomes of most Gram-positive bacteria, encoded im-
mediately upstream of the IreK homolog is a protein Ser/Thr
phosphatase of the PP2C family. The gene encoding the phospha-
tase typically overlaps slightly, and is cotranscribed with, the gene
for the kinase (20–23), suggesting that the two gene products
participate in related biological processes. In vitro, the purified
phosphatases are usually capable of dephosphorylating proteins
that have previously been phosphorylated by the cognate kinases
(reviewed in reference 13), suggesting that a given kinase-
phosphatase pair antagonistically regulates the level of substrate
protein phosphorylation. The phosphatases can also dephos-
phorylate the cognate kinases themselves in vitro, but it has not
been determined if this activity is relevant in vivo. Indeed, in vivo
analysis of these signaling systems has largely been limited to phe-
notypic study of mutants lacking either the kinase, phosphatase,

or both. These studies have yielded a conflicting picture in which
mutants lacking a given kinase or the corresponding phosphatase
in some cases exhibit opposing phenotypes—the expected out-
come if they function antagonistically— but in other cases exhibit
similar phenotypes (22–26). Genetic analyses by Osaki and co-
workers suggest that the PP2C phosphatase in pneumococcus
controls in vivo activity of the pneumococcal IreK homolog (27),
but those workers were unable to construct a phosphatase mutant
strain to thoroughly test this hypothesis. Thus, the nature of the
in vivo relationship between the kinase and phosphatase remains
unclear. In E. faecalis, a PP2C phosphatase is encoded immedi-
ately upstream of IreK, but its function was unknown prior to this
study.

Here we show that the putative E. faecalis phosphatase (now
designated IreP) is indeed a phosphatase capable of dephospho-
rylating the IreK kinase in vitro. Phenotypic analyses of various
mutants argues that this kinase-specific dephosphorylation activ-
ity represents an important function for IreP in vivo, and further
that the IreK/IreP kinase-phosphatase pair comprises the core of a
signal transduction pathway that reciprocally regulates intrinsic
cephalosporin resistance in E. faecalis. This careful regulation of
cephalosporin resistance is critical, as constitutive hyperresistance
imposes a substantial fitness cost in the absence of cephalosporin
stress.

RESULTS
E. faecalis IreK is a protein kinase whose activity is required for
cephalosporin resistance. Genetic analysis described in a previ-
ous study (9) revealed that IreK is required for intrinsic cephalo-
sporin resistance in E. faecalis. Sequence analysis predicted IreK to
be a Ser/Thr protein kinase, and homologs of IreK from other
Gram-positive bacteria have been experimentally shown to be ki-
nases (13). To test if E. faecalis IreK does indeed exhibit kinase
activity, we purified a recombinant 6His-tagged fragment of IreK
corresponding to the entire N-terminal fragment containing the
Ser/Thr kinase domain and juxtamembrane region (IreK-n) and
performed in vitro kinase assays using myelin basic protein (MBP)
as a surrogate substrate (MBP is routinely used as a substrate for
IreK homologs from other species of Gram-positive bacteria). We
also analyzed a mutant of IreK-n bearing a lysine-to-arginine sub-
stitution (K41R in IreK) at a conserved lysine within the kinase
ATP-binding P loop. Mutations at this invariant lysine residue in
other kinases of the IreK family are known to significantly impair
kinase activity (19, 22, 28, 29). Using the phosphoprotein stain
ProQ Diamond, we found that wild-type IreK-n phosphorylates
MBP in the presence of ATP. Furthermore, IreK-n itself exhibited
a strong signal, suggesting that it was autophosphorylated as well
(Fig. 1A). The IreK-n K41R mutant was substantially impaired at
phosphorylation of MBP and itself exhibited a significantly re-
duced phosphoprotein signal. In addition, we observed that the
K41R mutant exhibited a subtle shift in electrophoretic mobility
to a species that migrated faster through the gel than wild-type
IreK-n, suggesting that IreK autophosphorylation resulted in re-
duced electrophoretic mobility. We conclude that, as expected,
E. faecalis IreK is indeed a protein kinase.

Because the E. faecalis �ireK mutant is markedly susceptible to
cephalosporins, the IreK protein must play a role in promoting
cephalosporin resistance. To test if this phenotype reflects a re-
quirement for the kinase activity of IreK or for the IreK protein
per se, we expressed either the full-length wild-type or K41R mu-
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tant ireK kinase from a plasmid-based expression system in an
E. faecalis host lacking any endogenous IreK kinase. Immunoblot
analysis confirmed that both kinase alleles were expressed at com-

parable levels (Fig. 1C). Expression of the wild-type kinase re-
stored cephalosporin resistance to the mutant, whereas the
ireK(K41R) mutant was unable to do so (Fig. 1B), indicating that
the kinase activity of IreK is indeed critical for cephalosporin re-
sistance.

E. faecalis IreP is a protein phosphatase that can dephos-
phorylate the IreK kinase. In most low-GC Gram-positive bacte-
ria, the gene located immediately upstream of the IreK kinase
homolog is cotranscribed and encodes a protein phosphatase of
the PP2C family. The genetic organization of the ireK locus in
E. faecalis is similar, with a putative protein phosphatase (here
named IreP) encoded upstream of, and slightly overlapping, the
gene for the ireK kinase. We tested for cotranscription of ireP and
ireK by isolating RNA from wild-type E. faecalis and performing
reverse transcription-PCR analysis. We observed evidence for a
transcript containing both ireP and ireK (data not shown), indi-
cating that the kinase and phosphatase are coregulated in E. faeca-
lis. Our data also indicate that the ireP-ireK pair can be cotrans-
cribed with the genes immediately upstream of ireP (a putative
rRNA methyltransferase; EF3122) and downstream of ireK (a pu-
tative GTPase; EF3119). Of note, the B. subtilis homolog of IreK
(PrkC) has been reported to phosphorylate the GTPase encoded
downstream (called CpgA in B. subtilis), although it remains un-
clear if this is functionally significant (30). We attempted to phos-
phorylate the E. faecalis homolog (EF3119) with IreK-n in vitro
but did not observe any evidence for phosphorylation under our
conditions (data not shown).

To test if E. faecalis IreP exhibited phosphatase activity, we
purified a recombinant 6His-tagged IreP and performed in vitro
phosphatase assays using the small-molecule colorimetric phos-
phatase substrate p-nitrophenyl phosphate, which forms a col-
ored product upon dephosphorylation. E. faecalis IreP exhibited
phosphatase activity in a manganese-dependent manner
(Fig. 2A), consistent with the properties of IreP homologs from

FIG 1 IreK kinase activity is required for cephalosporin resistance in E. faeca-
lis. (A) In vitro kinase activity of IreK. Wild-type (WT) and mutant (K41R)
IreK kinase domains were purified and used for in vitro phosphorylation reac-
tions with myelin basic protein (MBP) as a surrogate substrate. Reaction mix-
tures were incubated in the absence (�) or presence (�) of 2 mM ATP. At the
indicated times (in minutes), aliquots were quenched with SDS loading buffer
and subjected to SDS-PAGE. Phosphoproteins were detected using ProQ Di-
amond phosphoprotein stain, followed by GelCode blue staining to detect
total proteins. Molecular weight standards are indicated at the left. Results are
representative of a minimum of three independent experiments. (B) Kinase
activity is required for resistance. Cultures of plasmid-bearing strains were
subjected to serial 10-fold dilutions and inoculated (left to right, least to most
dilute) onto BHI agar supplemented with Em alone (control) or in addition to
a cephalosporin antibiotic (ceftriaxone, 1 �g/ml). The WT and �irePK strains
were OG1RF and CK125, respectively. Plasmids are indicated in parentheses:
vector, pJRG8 empty vector; WT, pCJK160 expressing wild-type IreP and IreK;
K41R, pCJK216 (analogous to pCJK160 but carrying the K41R allele of ireK).
(C) Immunoblot analysis of IreK expression. Whole-cell lysates from CK125
(�irePK) carrying empty vector (pJRG8) or pJRG8 expressing ireP and either
wild-type ireK (pCJK160) or ireK K41R (pCJK216) were probed with anti-IreK
antibody (�-kinase) or anti-sigma factor antibody (�-sigma) as a loading con-
trol. Results are representative of a minimum of two experiments analyzing at
least three transformants derived from independent electroporations.

FIG 2 IreP is a phosphatase that can dephosphorylate IreK. Recombinant
His-tagged IreP was purified and used for in vitro phosphatase reactions. (A)
Phosphatase activity monitored using p-nitrophenyl phosphate (pNPP) as a
substrate. IreP was incubated with pNPP and various concentrations of either
Mg2� or Mn2� as a cofactor for 20 min at room temperature. The reactions
were quenched, and absorbance was measured at 405 nm to detect cleaved
product. Error bars represent standard deviations for triplicate samples and
are too small to see in some cases. (B) IreK-n was incubated in kinase buffer
with ATP and MBP for 30 min to allow phosphorylation to occur. The reaction
mixture was split, and IreP was added to 1 aliquot; mixtures were incubated for
30 min and subjected to SDS-PAGE. Phosphoproteins were detected using
ProQ Diamond phosphoprotein stain followed by GelCode blue staining to
detect total proteins. Results are representative of a minimum of three inde-
pendent experiments.
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other Gram-positive bacteria. E. faecalis IreP was also capable of
dephosphorylating the IreK substrate MBP and, importantly,
IreK-n kinase itself (Fig. 2B). In addition, IreP treatment resulted
in a subtle shift in electrophoretic mobility of IreK-n that appears
to be characteristic of a change in phosphorylation status. We note
that IreP itself exhibited a faint phosphoprotein signal; however,
control experiments in the absence of ATP (and on IreP purified
directly from E. coli) indicated that this signal represents nonspe-
cific background staining of IreP (not shown).

E. faecalis �ireP mutants exhibit hyperresistance to cephalo-
sporins. We hypothesized that IreP-mediated dephosphorylation
of IreK in vivo might play a critical regulatory role in controlling
IreK kinase activity and, by extension, cephalosporin resistance.
To probe the role of IreP in vivo, we constructed E. faecalis mu-
tants lacking the ireP gene. In this context, it is noteworthy that
IreP is the only identifiable PP2C-family phosphatase encoded in
the E. faecalis genome. Because ireP overlaps with ireK, we con-
structed an in-frame deletion lacking 92% of the ireP gene without
disrupting any ireK coding sequences, to avoid perturbing expres-
sion of the ireK kinase. Immunoblot analysis verified that IreK was
indeed expressed in the �ireP mutant at levels comparable to that
of wild-type (Fig. 3B). On brain heart infusion (BHI) agar plates,
colonies of the �ireP mutants exhibited a distinct morphology,
appearing more opaque (white) and compact than those of the
isogenic wild type. Exponential-growth rates for the �ireP mutant
in liquid culture were only slightly lower than those for the wild
type (generation times of 31 � 2 min versus 37 � 2 min in
Mueller-Hinton broth [MHB] for the wild type [CK138] and the
isogenic �ireP mutant [CK204], respectively). However, antimi-
crobial susceptibility tests revealed a striking phenotype: the �ireP
mutant was substantially more resistant to cephalosporins (�64-
fold for ceftriaxone) than the isogenic wild-type strain (Fig. 3A;
Table 1). Indeed, the �ireP mutant was capable of growth at all

cephalosporin concentrations tested (up to 2,048 �g/ml). Expres-
sion of ireP in trans eliminated hyperresistance (Fig. 3C), indicat-
ing that hyperresistance was indeed due to the lesion in ireP. Fur-
thermore, we constructed an identical deletion of ireP in a
divergent lineage of E. faecalis (T1) and found that the E. faecalis
T1 �ireP mutant also exhibited a cephalosporin hyperresistance
phenotype relative to its isogenic wild-type parent (Fig. 3A). Thus,
the role of IreP in regulating cephalosporin resistance is likely
conserved across E. faecalis as a species.

Previous work established that E. faecalis requires the IreK ki-
nase for its intrinsic resistance to cephalosporins but not for resis-
tance to antibiotics affecting other cellular processes. Because we
hypothesized that IreP functions to regulate the activity of the IreK

FIG 3 E. faecalis �ireP mutants exhibit hyperresistance to cephalosporins. (A) Cultures were subjected to 10-fold serial dilutions and inoculated (left to right,
least to most dilute) on BHI agar supplemented with indicated concentrations of ceftriaxone. Strains: OG, wild-type E. faecalis OG1RF; OG �ireK, CK119; OG
�ireP, CK121; T1, wild-type E. faecalis T1; T1 �ireK, JL202; T1 �ireP, JL204. (B) Immunoblot analysis of IreK expression. Whole-cell lysates from OG1RF
(wild-type), CK119 (�ireK), CK125 (�ireP �ireK), and CK121 (�ireP) were probed with anti-IreK antibody (�-kinase) or anti-sigma factor antibody (�-sigma)
as a loading control. (C) Complementation analysis of the E. faecalis �ireP mutant. Cultures of plasmid-bearing strains were subjected to serial 10-fold dilutions
and inoculated (left to right, least to most dilute) onto BHI agar supplemented with Em alone (control) or in addition to ceftriaxone. WT and �ireP strains were
OG1RF and CK121. Plasmids are indicated in parentheses: vector, pJRG8 empty vector; ireP, pJLL25 expressing wild-type IreP. Results are representative of a
minimum of three experiments analyzing independently derived mutants.

TABLE 1 Median MICs for wild-type and mutant E. faecalis strains

Drug type
or target
and name

MIC (�g/ml)a for:

OG1RF
(wild type)

CK119
(�ireK)

CK121
(�ireP)

CK125
(�ireP
�ireK)

Cephalosporins
Ceftriaxone 32 2 �2,048 2
Ceftazidime 128 16 �2,048 16

Other cell wall
Ampicillin 1 0.5 2 0.5
Vancomycin 2 1 1 1
Bacitracin 64 32 32 32
D-Cycloserine 128 64 256 64

Other targets
Norfloxacin 4 4 2 4
Chloramphenicol 4 4 4 4
Kanamycin 128 128 64 128

a Determined in MHB after 24 h incubation at 37°C from a minimum of three
independent experiments.
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kinase, we reasoned that the �ireP mutant would likewise exhibit
hyperresistance specifically towards cephalosporins. To test this,
we performed susceptibility analyses with antibiotics targeting
various cellular functions. The results (Table 1) indicate that the
hyperresistant phenotype of the �ireP mutant is essentially spe-
cific for cephalosporins, as few changes in susceptibility to other
antibiotics were apparent. Thus, hyperresistance of the �ireP mu-
tant is not the result of enhancement in a general stress response.
Furthermore, these results are consistent with the hypothesis that
an important role of IreP is to control IreK kinase activity, thereby
influencing cephalosporin resistance.

Hyperresistance of the E. faecalis �ireP mutant is mediated
by IreK. Phosphorylation of amino acids in the kinase activation
loop is known to enhance the catalytic activity of Ser/Thr kinases
in the superfamily to which IreK belongs. In the absence of the
IreP phosphatase, we reasoned that IreK might become highly
phosphorylated, including at sites in the activation loop, leading
to enhanced kinase activity that could drive hyperresistance to
cephalosporins. To test the hypothesis that hyperresistance of the
�ireP mutant is a consequence of uncontrolled, abnormally high
IreK kinase activity, we performed an epistasis experiment by con-
structing a mutant of E. faecalis lacking the genes for both the ireP
phosphatase and the ireK kinase. Antimicrobial susceptibility tests
revealed that the double mutant phenocopied the kinase single
mutant (Table 1)—removal of ireK eliminated hyperresistance
exhibited by the �ireP mutant. Indeed, no differences were ob-
served between the phenotype of the �ireP �ireK double mutant
and that of the kinase single mutant. Thus, these data are consis-
tent with the hypothesis that IreP regulates cephalosporin resis-
tance at least in part by modulating activity of the IreK kinase.

Given the observation that IreP is capable of dephosphorylat-
ing IreK in vitro (Fig. 2B), we hypothesized that IreP-mediated
dephosphorylation of sites in the activation loop of the IreK kinase
served to control IreK activity in vivo. To test this, we constructed
a kinase allele carrying phosphomimetic (T-to-E) substitutions at
the three predicted sites of phosphorylation in the IreK activation
loop [ireK(T163E/T166E/T168E)]. The likely sites of phosphory-
lation in IreK were chosen based on sequence alignment and com-
parison with known sites of phosphorylation on the mycobacte-
rial PknB and B. subtilis PrkC kinases. Mass spectrometry analyses
subsequently confirmed that these sites can be phosphorylated on
IreK-n (C. L. Hall and C. J. Kristich, unpublished data). We rea-
soned that the T-to-E substitutions in IreK would mimic phos-
phorylation at these sites and lead to kinase activation, but because
they are uncleavable by IreP, the mutant kinase would exhibit
constitutively high activity. We predicted that this would lead to
enhanced cephalosporin resistance—in principle, similar to the
phenotype of the �ireP mutant— despite the presence of wild-
type IreP phosphatase in the cells. We expressed the T-to-E triple
mutant kinase along with wild-type IreP phosphatase in E. faecalis
and confirmed by immunoblotting that the mutant kinase was
expressed at levels comparable to that of the wild type (Fig. 4A).
Antimicrobial susceptibility tests revealed that expression of the
phosphomimetic-bearing-kinase allele does indeed provide en-
hanced cephalosporin resistance relative to its wild-type counter-
part (Table 2), consistent with the hypothesis that IreP dephos-
phorylates the activation loop of IreK kinase to negatively control
its activity. We note that although the strain expressing the phos-
phomimetic ireK allele exhibits enhanced cephalosporin resis-
tance, it is not as hyperresistant as the �ireP mutant, suggesting

that IreP-mediated dephosphorylation of heterologous kinase
substrates— or other phosphorylated sites on the kinase itself—
are also important for regulation of cephalosporin resistance
in vivo. Alternatively, the T-to-E substitutions may not fully
mimic the effect of phosphorylation at those sites.

Evidence for modulation of IreP phosphatase activity by
IreK. The experiments described above suggest that an important
role of IreP is to negatively control IreK kinase activity via dephos-
phorylation of the kinase activation loop. However, this inhibitory
activity is counterproductive when E. faecalis is confronted with
cephalosporins, in which case enhanced kinase activity is desirable
to mediate the appropriate biological response and generate resis-
tance. Therefore, we reasoned that a mechanism might exist to
transiently overcome the negative regulatory effect of IreP—to
attenuate the phosphatase activity of IreP— upon kinase activa-
tion. To test this, we performed phosphatase assays on lysates of
E. faecalis strains, using a phosphothreonine-containing peptide
as a surrogate phosphatase substrate. We compared phosphatase
activity in lysates of a strain expressing wild-type IreK kinase with
that in lysates of a strain expressing the hyperactive (phosphomi-
metic) triple-T-to-E allele of ireK (to mimic a state of kinase acti-
vation). IreP-specific phosphatase activity in lysates from the
strain containing the phosphomimetic kinase was reproducibly
lower than that in lysates from a strain with a wild-type kinase
(Fig. 4B), suggesting that some mechanism exists to attenuate IreP
phosphatase activity, at least transiently, upon kinase activation.

Hyperresistant �ireP mutants exhibit a fitness defect. Our
data support the hypothesis that IreP and IreK comprise key ele-
ments of a signal transduction system that regulates intrinsic

FIG 4 Reduced phosphatase activity in lysates with enhanced IreK kinase
activity. (A) Immunoblot analysis of IreK expression. Whole-cell lysates from
CK125 carrying an empty vector (pJRG8) or expressing IreP with either a
wild-type IreK kinase (pCJK160) or the T163E/T166E/T168E triple mutant
phosphomimetic allele (pCJK201) were probed with anti-IreK antibody
(�-kinase) or anti-sigma factor antibody (�-sigma) as a loading control.
(B) Phosphothreonine-specific phosphatase activity was measured in cleared
whole-cell lysates of the strains used for panel A. Error bars represent standard
errors of the means of values from three independent lysates and are too small
to be seen in most cases.

TABLE 2 Median MICs for CK125 (�irePK) harboring different
plasmids

Drug

MIC (�g/ml)a for CK125 harboring:

pJRG8
(vector)

pCJK160
(WT ireK)

pCJK201
(T163E/T166E/T168E)

Ceftriaxone 2 8 64
Ceftazidime 8 64 128
a Determined in MHB supplemented with Em after 24 h incubation at 37°C from a
minimum of three independent experiments.
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cephalosporin resistance in E. faecalis. That such a signaling sys-
tem exists implies that the cellular adaptation(s) required to over-
come cephalosporin stress imposes a fitness cost on the organism
in the absence of cephalosporins. To test this hypothesis, we per-
formed coculture competition experiments in which a marked
wild-type E. faecalis strain (marked with an unrelated antibiotic
resistance allele) was cocultured with a differentially marked mu-
tant strain lacking the IreP phosphatase. Cocultures were inocu-
lated with various ratios of the two strains and subjected to re-
peated daily cycles of growth and dilution into fresh medium
lacking cephalosporins. Aliquots of the cocultures were removed
at intervals and plated on appropriate selective media to distin-
guish wild-type E. faecalis from �ireP mutants. The results (Fig. 5)
revealed that the wild-type strains rapidly outcompeted the �ireP
mutants over the course of even a single dilution/growth cycle
(day 1) and even when the inoculum (day 0) was initially com-
posed of �90% mutants. Reciprocal competition experiments
performed with strains in which the antibiotic markers were
swapped (to ensure that the observed fitness defect of the �ireP
mutant was not impacted by the antibiotic markers used to tag the
strains) yielded similar results (Fig. 5). Thus, mutants lacking ireP
are substantially less fit in the absence of cephalosporins than
wild-type E. faecalis, suggesting that IreK-mediated adaptation(s)
to cephalosporin stress, while obviously beneficial in the presence
of cephalosporins, is costly to the cell in environments devoid of
cephalosporins.

DISCUSSION

The experiments described here were conducted in an effort to
understand the role of the E. faecalis PP2C phosphatase (IreP) and
Ser/Thr kinase (IreK) in mediating intrinsic cephalosporin resis-
tance. Our results argue that the IreK/IreP kinase-phosphatase
pair comprises the core of a signal transduction pathway that re-
ciprocally regulates intrinsic cephalosporin resistance in E. faeca-
lis. We used genetic analyses in two divergent lineages of E. faeca-
lis—OG1 and T1, belonging to multilocus sequence types 1 and
21, respectively (31)—to show that mutants lacking the IreP phos-
phatase exhibit hyperresistance to cephalosporins. Given that the
ireP ireK locus can be identified in all E. faecalis genomes se-

quenced to date (32–34), it seems likely that the IreP/IreK signal-
ing system reciprocally controls cephalosporin resistance in most
(or all) isolates of E. faecalis. Additionally, our genetic analysis
indicates that phosphorylation of IreK leads to kinase activation
in vivo (Table 2) and further suggests that a critical biological role
of the IreP phosphatase is to regulate IreK activity—and, by ex-
tension, cephalosporin resistance— by controlling the level of
IreK phosphorylation. The observation that ireK deletion is epi-
static to ireP deletion (Table 1) is consistent with this model. The
possibility that IreP could also regulate cephalosporin resistance
by controlling the phosphorylation level of a downstream tar-
get(s) of IreK has not been excluded, and such a mechanism may
well contribute to overall regulation of cephalosporin resistance.
However, a mechanism must exist to deactivate the IreK kinase in
the absence of cephalosporin stress to restore kinase activity to
precephalosporin levels. It seems likely that any such mechanism,
although it may be multifactorial, will require dephosphorylation
of the kinase, and our data argue that IreP plays an important role
in this process in vivo.

In the presence of cephalosporin stress, the inhibitory (phos-
phatase) activity of IreP on IreK would be counterproductive to
E. faecalis, as enhanced kinase activity is desirable to promote re-
sistance. Therefore, we reasoned that a mechanism might exist to
transiently overcome the negative regulatory effect of IreP—to
attenuate the phosphatase activity of IreP— upon kinase activa-
tion. Our results suggest that enhanced IreK kinase activity may
indeed lead to a reduction in IreP phosphatase activity (Fig. 4), in
principle enabling the kinase pool to become (at least transiently)
more active and mediate signaling to upregulate the as-yet-
unknown resistance mechanism(s). While more work is needed to
unravel the mechanism underlying this observation, we speculate
that IreK may phosphorylate IreP directly to inhibit its phospha-
tase activity. We hypothesize that with IreP in an “inactive” state,
a pool of IreK could become more highly phosphorylated (acti-
vated) and serve to activate downstream cephalosporin resistance
mechanisms. A recent report suggested that the IreP homolog of
M. tuberculosis (PstP) can be phosphorylated by its cognate kinase
(35), although in that case phosphorylation appeared to activate,
rather than inhibit, phosphatase activity. We tested to see if re-
combinant E. faecalis IreK-n could phosphorylate IreP in vitro but
were unable to observe any evidence of phosphorylation under
our conditions (data not shown).

The observation that the �ireP mutant exhibited hyper-
resistance to cephalosporins but not to ampicillin (Table 1) is
intriguing given that both cephalosporins and ampicillin belong
to the �-lactam class of antibiotics, all of which are thought to
exert their antimicrobial activity via inactivation of PBPs to pre-
vent PG cross-linking. We speculate that the inherent differences
in affinity for PBPs of broad-spectrum cephalosporins compared
to ampicillin account for this disparity. Ampicillin presumably
inhibits the entire repertoire of enterococcal PBPs efficiently
(leading to relatively low MICs), whereas the cephalosporins are
unable to bind efficiently to Pbp5 and cannot inhibit its activity
(leading to intrinsic cephalosporin resistance). Exposure to ceph-
alosporins may therefore lead to a unique physiological state in
which Pbp5 is active— but other PBPs are inhibited—that some-
how triggers IreK activation. The PASTA domains of IreK-like
kinases appear to bind PG or fragments thereof (10–12), suggest-
ing that cephalosporin exposure could lead to accumulation of an
IreK-activating ligand in PG as a component of this mechanism.

FIG 5 Hyperresistant �ireP mutants exhibit a competitive fitness defect.
Differentially marked wild-type or �ireP mutants were inoculated at various
ratios and cocultured in MHB with daily repeated cycles of growth and dilu-
tion. At intervals, samples were removed and dilutions spread on appropriate
selective media to enumerate wild-type and �ireP organisms present.
(A) Wild-type (OG1Sp, Spr) and �ireP (CK204, Far); (B) wild-type (CK138,
Far) and �ireP (JL178, Spr). Data are representative of a minimum of three
independent experiments.
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However, the CroRS two-component signaling system is also re-
quired for full cephalosporin resistance in E. faecalis (7, 8), indi-
cating that the resistance signaling pathway is more complex and
may involve additional signals. The mechanism by which IreK/P is
integrated with CroRS to confer resistance is unknown, but IreK-
like kinases from streptococci are known to phosphorylate two-
component response regulators (36, 37), suggesting a potential
route for direct control of the CroR response regulator by IreK.
Our initial attempts to phosphorylate CroR with IreK in vitro have
proven unsuccessful (data not shown). Future studies will address
the functional interconnections between these signaling systems.

Many studies have shown that antibiotic-resistant bacteria are
less fit than their susceptible counterparts in the absence of anti-
biotic stress (38). For example, a recent study demonstrated that
constitutive expression of vancomycin resistance in enterococci
leads to a significant fitness reduction in the absence of vancomy-
cin (39) and, furthermore, that tight regulation of vancomycin
resistance expression by the VanSR signal transduction system
reduces the biological cost of vancomycin resistance dramatically.
Our results indicate that constitutive cephalosporin resistance
also imposes a substantial fitness cost on E. faecalis in the absence
of cephalosporins (Fig. 5). The molecular basis for this fitness cost
is not yet clear, in part because the output of the IreK/IreP signal-
ing pathway is unknown. In any case, regulation of cephalosporin
resistance by the IreK/IreP signaling system plays a critical role in
balancing the expression of resistance functions given the needs of
the cell in a particular environment to minimize the biological
cost associated with resistance and maximize the ability of
E. faecalis to be competitive in the face of environmental fluctua-
tions it encounters in the GI tract.

MATERIALS AND METHODS

Bacterial strains, growth media, and chemicals. Strains used in this study
are listed in Table 3. Brain heart infusion medium (BHI) and Mueller-
Hinton broth (MHB) were prepared as described by the manufacturer
(Becton Dickinson). Bacteria were stored at �80°C in BHI supplemented
with 30% glycerol. Antibiotics and other chemicals were obtained from
Sigma unless otherwise indicated. Erythromycin (Em) was used at 10 �g/
ml, spectinomycin (Sp) at 1,000 �g/ml, and fusidic acid (Fa) at 25 �g/ml
for growth of resistant E. faecalis.

Construction of E. faecalis mutants. All PCR amplifications used
E. faecalis OG1RF genomic DNA as the template and Pfu II Ultra poly-
merase (Stratagene). The markerless exchange system described by Kris-
tich et al. (40) was used to construct unmarked, in-frame deletions of ireP
in various genetic backgrounds. Briefly, a derivative of plasmid pCJK47
carrying an in-frame deletion allele of ireP (pCJK75) was constructed
using the BsaI-based cloning scheme (40) to seamlessly fuse two PCR
amplicons flanking ireP to form the in-frame deletion. The deletion allele
was designed such that the first 10 codons and the last 10 codons of the
ireP gene remained, in an effort to avoid any unanticipated effects on
expression of adjacent genes, removing 92% of the ireP gene. This �ireP
allele was transferred to the native ireP location in the E. faecalis chromo-
some using pVE6007 as a helper plasmid to facilitate recombination as
previously described (41). Successful isolation of �ireP mutants was
achieved after incubation of counterselection plates at room temperature
or 30°C for ~3 days. An E. faecalis double mutant lacking ireP and ireK
(CK125) was constructed via an analogous strategy, using a pCJK47 de-
rivative (pCJK105) carrying an in-frame deletion of both ireP and ireK.
This double mutant allele retained the first 10 codons of ireP and the last
6 codons of ireK. Finally, the previously described �ireK2 allele was intro-
duced into E. faecalis T1 using pVE6007-assisted recombination of
pCJK74.

TABLE 3 Strains and plasmids used in this study

Strain or plasmid Relevant description or genotypea Source or reference

Strains
E. coli

TOP10 Routine cloning host Invitrogen
BL21[DE3] Protein overproduction host Lab stock

E. faecalis
OG1 Wild-type, original unmarked isolate (MLST 1) 43
OG1RF Spontaneous rifampin-resistant and Far derivative of OG1 44
CK119 OG1RF �ireK2 9
CK121 OG1RF �ireP2 This work
CK125 OG1RF �(ireP-ireK)2 This work
OG1Sp Spontaneous Spr derivative of OG1 40
JL178 OG1Sp �ireP2 This work
CK138 Spontaneous Far derivative of OG1 This work
CK204 CK138 �ireP2 This work
T1 (SS498) Wild-type (MLST 21), CDC reference strain 45
JL202 T1 �ireK2 This work
JL204 T1 �ireP2 This work

Plasmids
pCJK47 Counterselectable vector for allelic exchange 40
pCJK74 �ireK2 allele in pCJK47 9
pCJK75 �ireP2 allele in pCJK47 This work
pCJK105 �(ireP-ireK)2 allele in pCJK47 This work
pCJK111 pET28b::ireK-n (kinase/juxtamembrane domain) This work
pCJK112 pET28b::ireP This work
pJRG8 E. faecalis expression vector, constitutive P23 promoter (Emr) This work
pJLL25 pJRG8::ireP This work
pCJK160 pJRG8::ireP ireK This work
pCJK201 pJRG8::ireP ireK(T163/166/168E) This work
pCJK216 pJRG8::ireP ireK K41R This work

a MLST, multilocus sequence type.
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Construction of plasmids. A plasmid to express genes in E. faecalis
was constructed by amplifying the constitutive P23 promoter (lacking the
last 34 nucleotides) from pDL278p23 (42) and cloning it with primer-
specified BglII and SpeI restriction sites to replace the rhamnose-
inducible promoter of pCJK96 (9), creating pJRG8. For complementation
of the �ireP mutation, ireP was amplified and cloned into pJRG8 using
primer-specified SphI and XhoI sites, yielding pJLL25. For analysis of
mutant ireK alleles, we chose to express both ireP and ireK from pJRG8
(introduced into an E. faecalis host lacking both genes, CK125) due to the
likely translational coupling of these genes, in an attempt to ensure that
both gene products were produced in the appropriate stoichiometry re-
flecting the natural state. To do so, the locus containing ireP and ireK was
amplified and cloned using primer-specified SphI/XhoI sites into pJRG8,
creating pCJK160. We note that, for unrelated purposes, an artificial XbaI
site was introduced near the end corresponding to the C terminus of IreP
encoded in pCJK160 via silent mutagenesis. This plasmid served as the
basis for introduction of specific point mutations in ireK using a BsaI-
based seamless cloning strategy, creating pCJK201 and pCJK216. Plas-
mids to express N-terminally His-tagged IreP and IreK-n were con-
structed by amplifying either full-length ireP or residues 1 to 331 of ireK
(kinase domain plus juxtamembrane segment) and cloning them into
pET28b (Novagen) using primer-specified NdeI/XhoI sites.

Antibiotic susceptibility. MICs of antibiotics were determined in aer-
obic liquid cultures using a microtiter plate serial dilution method in a
Bioscreen C plate reader (Oy Growth Curves Ab, Ltd.). Twofold dilutions
of antibiotics in MHB were prepared in the wells of a 100-well honeycomb
microtiter plate. Bacteria from stationary-phase cultures in MHB were
inoculated into each well to a concentration of ~105 CFU/ml. Plates were
incubated at 37°C for 24 h with brief shaking and measurement of optical
density at 600 nm (OD600) at 15-min intervals. The lowest concentration
of antibiotic that prevented growth was recorded as the MIC. In some
cases, antibiotic susceptibility was also assessed by preparing serial 10-fold
dilutions of stationary-phase cultures and inoculating aliquots onto the
surface of agar plates supplemented with antibiotics.

Protein purification. Overnight cultures of E. coli BL21[DE3] carry-
ing the desired expression plasmid were diluted 50-fold in fresh LB media
and cultured at 37°C for 3 h. Cells were induced with 1 mM IPTG
(isopropyl-�-D-thiogalactopyranoside) for 1 h and collected by centrifu-
gation, suspended in 10 ml of binding buffer (50 mM Tris [pH 8.0],
300 mM NaCl, 5 mM imidazole), and treated with 1 mg/ml lysozyme for
20 min at 37°C. After disruption by sonication, the lysates were clarified by
centrifugation (35,000 � g for 15 min) and passed through a 0.2-�m filter.
Clarified lysates were applied to Profinity Ni-charged resin (Bio-Rad) pre-
viously equilibrated with binding buffer and washed with 10 column vol-
umes of wash buffer (50 mM Tris [pH 8.0], 300 mM NaCl, 20 mM imi-
dazole), and bound proteins were recovered with elution buffer (50 mM
Tris [pH 8.0], 300 mM NaCl, 500 mM imidazole). Fractions containing
the protein of interest were pooled and dialyzed into storage buffer
(50 mM Tris [pH 8], 150 mM NaCl, 10% glycerol) at 4°C.

Kinase activity of IreK-n. Purified 6His-IreK-n (1.3 �M) was incu-
bated with myelin basic protein (9.4 �M) in kinase buffer (50 mM Tris
[pH 7.5], 25 mM NaCl, 1 mM MnCl2, 1 mM MgCl2, 1 mM dithiothreitol,
0.1 mM EDTA) at 37°C in the presence or absence of ATP (2 mM). In
some cases, purified 6His-IreP was included at 0.8 �M. Aliquots were
removed at intervals and quenched with Laemmli sodium dodecyl sulfate
(SDS) sample buffer. Following SDS-polyacrylamide gel electrophoresis
(PAGE), ProQ Diamond phosphoprotein stain (Invitrogen) was used to
detect phosphorylated proteins according to the manufacturer’s instruc-
tions. Total protein was subsequently detected in the same gel using
GelCode blue (Pierce).

Phosphatase activity of purified IreP. Reactions were carried out in
volumes of 100 �l in 96-well plates. Purified 6His-IreP (168 nM) was
incubated with 20 mM para-nitrophenyl phosphate (Pierce) in 50 mM
Tris (pH 8.0) supplemented with various concentrations of MnCl2 or

MgCl2 for 20 min at room temperature. Reactions were terminated by
addition of 50 �l of 2 M NaOH, and absorbance at 405 nm was measured.

Phosphatase activity in lysates. Cultures growing exponentially in
BHI plus Em were harvested by centrifugation and stored at �20°C.
Thawed pellets were washed three times with ultrapure water and sus-
pended in 250 �l of lysis buffer (50 mM Tris [pH 7.4], 1 mM EGTA, 0.2%
Triton X-100, 0.1% �-mercaptoethanol) containing 1� HALT protease
inhibitor (Pierce). Bacteria were disrupted by bead beating. Beads and
intact bacteria were collected by centrifugation (16,000 � g, 15 min), and
lysates were passed through desalting columns (Bio-Spin 6, Bio-Rad).
Protein concentration was determined using Coomassie plus protein as-
say reagent (Pierce). Phosphatase activity was determined with a serine/
threonine phosphatase assay system kit (Promega). Desalted lysates were
added at a final concentration of 10 �g/ml to reaction mixtures containing
50 mM imidazole (pH 7.2), 5 mM MnCl2, 0.02% �-mercaptoethanol,
200 �M EGTA, and 200 �M phosphothreonine peptide and incubated at
37°C. Control reaction mixtures did not contain phosphopeptide. At in-
tervals, aliquots were removed and mixed with an equal volume of mo-
lybdate dye substrate to stop the reaction. Absorbance was measured at
630 nm.

Competition experiments. Strains to be competed were cultured
(separately) overnight in MHB. Culture density (OD600) was determined,
and the differentially marked wild-type and mutant strains were mixed in
the desired proportion (typically ~90 to 95% mutant, 5 to 10% wild-type)
in fresh MHB. The mixtures were subjected to serial dilutions, and ali-
quots were plated on BHI agar plates supplemented with appropriate
antibiotics to enumerate wild-type and mutant cells in the inoculum. The
mixed inoculum was diluted to a density of ~104 CFU/ml and incubated at
37°C until the following day. Dilutions and enumeration were repeated on
successive days.

Antibodies and immunoblots. Anti-IreK antiserum (a generous gift
from Patrick Schlievert) was produced by immunization of Dutch Belted
rabbits with purified 6His-IreK-n and used at a dilution of 1 to 10,000 for
immunoblots with goat anti-rabbit IgG horseradish peroxidase (HRP)-
conjugated secondary antibodies (Invitrogen). E. faecalis sigma factor
(�A) was detected using anti-RNA polymerase sigma 70 monoclonal an-
tibody 2G10 (Abcam) with goat anti-mouse IgG HRP-conjugated sec-
ondary antibodies (Invitrogen). Total cell lysates of E. faecalis strains for
immunoblot analysis were prepared from exponentially growing cells by
digestion with 5 mg/ml lysozyme in lysozyme buffer (20 mM Tris
[pH 8.0], 10 mM EDTA) for 20 min at 37°C prior to solubilization in
Laemmli SDS sample buffer.
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